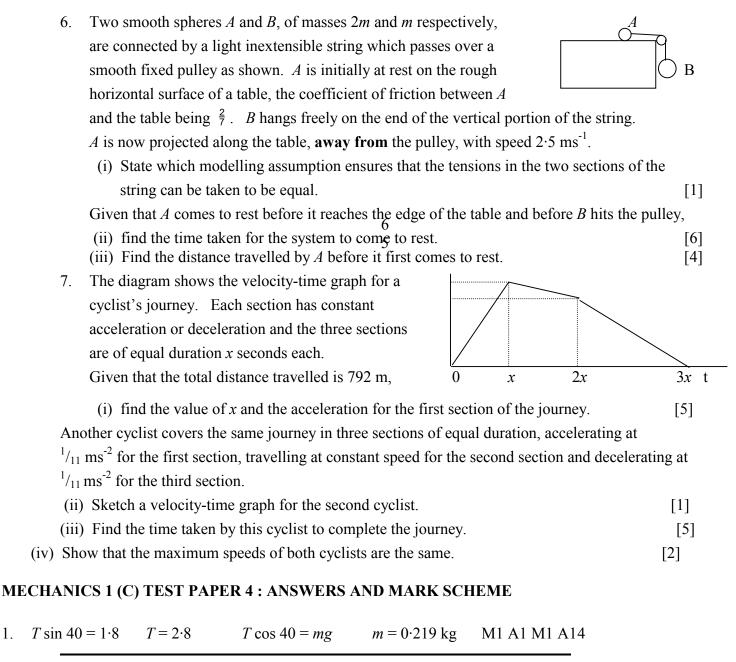

MECHANICS (C) UNIT 1TEST PAPER 4Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.


A small ball is attached to the end of a light 1. inextensible string. When a horizontal force of magnitude 1.8 N is applied to the ball, it rests in equilibrium under gravity with the string taut and making an angle of 40° with the vertical. Calculate the mass of the ball.

- A particle P moves in a straight line. At time t seconds after passing through a fixed point O on 2. the line, its velocity is $v \text{ ms}^{-1}$ where $v = 5 - 2\sqrt{t}$. Find
 - (i) the times at which the speed of P is 1 ms^{-1} , [3]
 - (ii) the magnitude of the acceleration of P when t = 4. [3]

- A packing case, of mass 60 kg, is standing on the floor of a lift. The mass of the lift-cage is 200 4. kg. The lift-cage is raised and lowered by means of a cable attached to its roof. In each of the following cases, find the magnitude of the force exerted by the floor of the lift-cage on the packing-case and the tension in the cable supporting the lift :
 - (i) The lift is descending with constant speed. [3]
 - (ii) The lift is ascending and accelerating at 1.2 ms^{-2} . [4]
 - State any modelling assumptions you have made. [2]
- Two smooth spheres X and Y, of masses x kg and y kg respectively, are free to move in a smooth 5. straight groove in a horizontal table. X is projected with speed 6 ms⁻¹ towards Y, which is stationary. After the collision X moves with speed 2 ms⁻¹ and Y moves with speed 3 ms⁻¹. (i) Calculate the two possible values of the ratio x : y. [6] Y now strikes a vertical barrier and rebounds along the groove with speed k ms⁻¹, colliding again with X which is still moving at 2 ms^{-1} . Given that in this impact Y is brought to rest and the direction of motion of X is reversed, (ii) show that k > 1.5. [4]

2.	(i) $5 - 2\sqrt{t} = \pm 1$	$1 2\sqrt{t} = 4 \text{ or } 6$	t = 4 or t = 9	M1 A1 A1	
	(ii) $a = -t^{-\frac{1}{2}}$	t = 4 : a = -0.5	magnitude = 0.5 ms^{-2}	M1 A1 A1	6

1.

Net force to south = $4\sqrt{3} - 4 = 2.928$; net force east = 5 - 4 = 1 M1 A1 A1Res. = $\sqrt{(2.928^2 + 1^2)} = 3.09 \text{ N}$; bearing = $90^0 + \tan^{-1}(2.928) = 161^0 \text{ M1 A1 M1 A17}$ 3

4.	(i) $T - 260g = 0$ $T = 2550$ N	R - 60g = 0 $R = 588$ N	M1 A1 A1
	(ii) $T - 260g = 1.2 \ge 260$	T = 2548 + 312 = 2860 N	M1 A1
	$R - 60g = 1.2 \ge 60$	R = 588 + 72 = 660 N	M1 A1

PMT

	Modelled lift and case as particles, cable as light string	B1 B1 9
5.	(i) Momentum conserved : $6x = \pm 2x + 3y$ $4x = 3y$ or $8x = 3y$ x : y = 3 : 4 or $x : y = 3 : 8$	M1 A1 A1 M1 A1 A1
	(ii) $2x - ky = vx$ where $v < 0$. X moving towards Y, so $x : y = 3 : 4$ Hence $2 - \frac{4}{3}k < 0$ $k > 1.5$	M1 A1 M1 A1 10
6.	(i) Smooth pulley (ii) $F = ma$ for each sphere : $T + \frac{2}{7}(2mg) = 2ma$, $mg - T = ma$ Add : $3ma = \frac{11}{7}mg$ $a = \frac{11g}{21} = 5.13 \text{ ms}^{-2}$	B1 B1 B1 M1 A1
	v = u + at : 0 = 2.5 - 5.13t (iii) $v^2 = u^2 + 2as : 0 = 2.52 - 10.27s$ $s = 0.609$ m	M1 A1 M1 A1 M1 A1 11
7.	(i) Sum of areas = $3x + 5 \cdot 5x + 2 \cdot 5x = 792$ $11x = 792$ $x = 72$ Acc. = $6 \div 72 = \frac{1}{12} \text{ ms}^{-2}$ (ii) Graph sketched (iii) Area under new graph = $\frac{1}{2}(3t + t)(\frac{1}{11t}) = 792$ $4t^2 = 22 \times 79$ $t^2 = 4356$ $t = 66$ Total time = $3t = 198$ s	M1 A1 A1
	(iv) $v_{\text{max}} = 66 \times \frac{1}{11} = 6 \text{ ms}^{-1}$, as for first cyclist	M1 A1 13

PMT